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We study the Lyapunov exponents of a two-dimensional, random Lorentz gas at low
density. The positive Lyapunov exponent may be obtained either by a direct analysis of
the dynamics, or by the use of kinetic theory methods. To leading orders in the density
of scatterers it is of the form A0ñ ln ñ + B0ñ, where A0 and B0 are known constants
and ñ is the number density of scatterers expressed in dimensionless units. In this
paper, we find that through order (ñ2), the positive Lyapunov exponent is of the form
A0ñ ln ñ + B0ñ + A1ñ2 ln ñ + B1ñ2. Explicit numerical values of the new constants
A1 and B1 are obtained by means of a systematic analysis. This takes into account, up
to O(ñ2), the effects of all possible trajectories in two versions of the model; in one
version overlapping scatterer configurations are allowed and in the other they are not.
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1. INTRODUCTION

The Lorentz gas is a model consisting of a set of scatterers that are fixed in space,
together with a moving point particle (or a cloud of mutually non-interacting
point-particles) undergoing collisions with the scatterers. Here we will consider
two variants of the two-dimensional version, where the scatterers are fixed hard
disks, placed at random in the plane and the collisions of the point particle with
the scatterers are elastic and specular. In the first version the positions of the
scatterers are completely random, so different scatterers may overlap each other
(this corresponds to the case of point scatterers with a moving particle of circular
shape). In the second version the scatterers may not overlap each other, but each
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configuration satisfying this constraint has equal a priori weight (this corresponds
to a hard-sphere interaction between the scatterers). The Lorentz Gas has proved
to be very useful for studying the general relations existing between dynamical
systems theory and the non-equilibrium properties of many body systems. Explicit
examples of such relationships encompass the escape rate formalism of Gaspard
and Nicolis(1,3) as well as the Gaussian thermostat formalism developed by Evans
and co-workers(2,3) and by Hoover and co-workers.(3,4) The Lorentz gas is known to
be chaotic due to the convex shape of the boundaries of the scatterers. Its chaotic
properties can be analyzed in fair detail, at least if the system is sufficiently
dilute, in other words, the average distance between neighboring scatterers is large
compared to their radius. For the model where the scatterers are placed on a
periodic lattice (the Sinai billiard) Sinai has shown mixing and ergodicity(5) and
demonstrated that on large time and length scales the motion of the point particle
is diffusive.2 Already much earlier Krylov(6) conjectured that to leading order the
positive Lyapunov exponent is of the form ñ ln ñ, with ñ ≡ na2 proportional to
the density of scatterers. Subsequently Van Beijeren et al.(7–9) carried out kinetic
theory calculations yielding explicit expressions for the Lyapunov exponents of a
disordered Lorentz gas (random configuration of scatterers) to leading orders, i.e.
up to O(ñ) in the scatterer density. These studies confirmed Krylov’s conjecture
and provided explicit values for the constants A0 and B0 appearing in the leading
terms A0ñ ln ñ + B0ñ of the expansion of the largest Lyapunov exponent in terms
of the scatterer density. The kinetic theory methods used for obtaining this result,
employ an averaging over all allowed configurations of the scatterers.

Up to quadratic order in the density of scatterers, the positive Lyapunov
exponent can be calculated by similar kinetic theory methods, refining the aver-
aging procedure described above, such that it (i) takes into account the effects
of non-overlap of the scatterers (for the non-overlapping scatterer model) and
(ii) accounts for the most important effects of correlated collisions. The additional
contributions to the positive Lyapunov exponent resulting from (i) and (ii) yield
the positive Lyapunov exponent correct through order ñ2. The purpose of this
paper is to present a systematic analysis to calculate these additional contributions
and to give explicit values for the new coefficients appearing in the expression
A0ñ ln ñ + B0ñ + A1ñ2 ln ñ + B1ñ2 for the positive Lyapunov exponent up to this
order. This is done in two steps: in the first step, we calculate the positive Lyapunov
exponent up to O(ñ2), assuming that the collisions between the point particle with
the scatterers are uncorrelated. This embodies that the particle does not encounter
any scatterer more than once, plus that all previous knowledge on the presence and

2 To be precise: this holds under the conditions that there is no “infinite horizon,” i.e. there are no
trajectories of infinte length that never hit a scatterer, and, in the case of overlapping scatterers, that
the space between the scatterers is percolating (extends to infinity).
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absence of scatterers on the track of the point particle is ignored. However, in the
non-overlapping scatterer model the influence of the non-overlap condition on the
collision frequency is taken into account (for the overlapping model no corrections
are needed for this at the given orders in ñ). In the second step, we consider (ii),
and calculate corrections to the Lyapunov exponents due to correlated collision
sequences in which the point particle either encounters the same scatterer more
than once, or its scattering probability is enhanced or suppressed by the knowl-
edge resulting from previous collisions, or the absence thereof. This includes the
immediate suppression of collisions as result of the non-overlap condition.

The structure of this paper is as follows: in Sec. 2, we briefly discuss the
general theory of the Lyapunov exponents for a two-dimensional, random Lorentz
gas. In Sec. 3, we calculate the Lyapunov exponents through O(ñ2) and obtain the
constants A1 and B1, defined above. We conclude the paper with some discussions
in Sec. 4. We note here that the structure of the calculation presented in this paper is
based on a thorough and intricate mathematical formalism, which is summarized
in the Appendix.

2. LYAPUNOV EXPONENTS OF THE RANDOM LORENTZ GAS

IN TWO DIMENSIONS: GENERAL THEORY

The random Lorentz gas consists of point particles of mass m, moving among
a random array of fixed scatterers. In two dimensions, the scatterers are hard disks
of radius a. We will consider two versions of the model: the Lorentz gas with
overlapping scatterers, in which each configuration of scatterers a priori has equal
probability (hence no weighting according to the amount of free volume left to the
point particles!), and the Lorentz gas with non-overlapping scatterers, in which
scatterers cannot overlap each other, but each configuration of scatterers satisfying
this constraint a priori is equally likely. For a system with N scatterers in a two-
dimensional volume V the number density of scatterers is n = N/V, and at low
density ñ � 1. There is no interaction between point particles. These particles,
therefore, travel freely during flights between collisions with the scatterers. The
collisions between a point particle and a scatterer are instantaneous, specular and
elastic. During flights, the equations of motion of a point particle are

ṙ = v = p

m
, ṗ = mv̇ = 0. (1)

At a collision with a scatterer, the post-collisional position and velocity, r+ and
v+ of the point particle are related to its pre-collisional position and velocity, r−
and v−, by

r+ = r−, v+ = v− − 2 (v− · σ̂ ) σ̂ . (2)
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Fig. 1. Collision between a point particle and a scatterer.

Here σ̂ is the unit vector in the direction from the center of the scatterer to the point
of collision (see Fig. 1). Notice that the dynamics generated by Eqs. (1, 2) keep
the speed of the point particle constant at v. The instantaneous velocity direction
of the particle is given by v̂(t) = v(t)/v.

The Lorentz gas with circular scatterers is a hyperbolic dynamical system.
Due to the convex nature of the collisions with the scatterers, typically, the dis-
tance between two infinitesimally close trajectories in phase space, [r(t), v(t)] and
[r + δr(t), v(t) + δv(t)], increases exponentially with time. There are two non-
zero Lyapunov exponents, which sum to zero. We denote the positive Lyapunov
exponent by λ+. Without any loss of generality, one can characterize the time evo-
lution of the separation between two nearby trajectories by that of its projection
onto v-space. The positive Lyapunov exponent then can be defined as

λ+ = lim
T →∞

lim
|δv(t0)| → 0

1

T
ln

|δv(t0 + T )|
|δv(t0)| . (3)

The non-overlapping random Lorentz gas is generally supposed to be ergodic,
even in the infinite-system limit (although we do not know of any proof of this).
Therefore this definition of λ+ should be (almost) independent of the choice of
the initial point of the trajectory. For the overlapping Lorentz gas the situation is
slightly more subtle: in this model, if the volume becomes large enough, ergodicity
will be broken. There will always be finite enclosures formed by three or more
scatterers, from which a point particle cannot escape if it is trapped inside initially
(see Fig. 2). However, as long as the density of scatterers is below a critical perco-
lation density, in the infinite system limit there will always be a single unbounded
percolating region on which the motion of the point particles is diffusive on large
time and length scales. We will be interested in the Lyapunov exponents of such
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Fig. 2. A situation for the Lorentz gas with overlapping scatterers, wherein the point particle cannot
leave the enclosure formed by the four scatterers.

particles only (even though particles moving inside an enclosure will also exhibit
a positive Lyapunov exponent).

As an alternative to Eq. (3), one can also choose to measure the separation of
two nearby trajectories in r-space — after all, δv(t) = dδr(t)

dt . In this representation
the positive Lyapunov exponent becomes

λ+ = lim
T →∞

lim
|δr(t0)| → 0

1

T
ln

|δr(t0 + T )|
|δr(t0)| . (4)

When calculating λ+ using Eq. (3), one may take advantage of the feature that
the separation in velocity space between the two trajectories undergoes a change
only at the collisions with the scatterers. If the point particle suffers k collisions
between time t0 and t0 + T , then(9)

λ+ = lim
T →∞

lim
|δv(t0)| → 0

k

T

1

k

k∑
i=1

ln
|δvi+|
|δvi−| , (5)

where, δvi− and δvi+ are respectively the pre- and the post-collisional separation
in velocity space between the two trajectories at the i-th collision.

On the other hand, to obtain the time evolution of |δr(t)|, one may intro-
duce another dynamical quantity, called the radius of curvature, and defined as
ρ = v

|δr(t)−v̂(t)·δr(t)|
|δv(t)−v̂(t)·δv(t)| .

(3,7,9) It characterizes the divergence between neighboring tra-
jectories and in two dimensions it may be defined as the distance of the actual
positions on a pair of such trajectories to the intersection of the tangent lines to
their spatial components (with ρ positive if this point is found in the past). In terms
of the radius of curvature the positive Lyapunov exponent may be expressed as,(5)

λ+ = lim
T →∞

v

T

∫ t0 + T

t0

d t

ρ(t)
. (6)
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During a free flight, the equation of motion for ρ is given by Ref. 3

ρ̇ = v. (7)

At a collision with a scatterer, the post-collisional radius of curvature ρ+ is related
to the pre-collisional radius of curvature ρ− by Refs. 3,7,9

1

ρ+
= 1

ρ−
+ 2

a cos φ
, (8)

which is well-known from geometric optics. Here φ is the collision angle, i.e,
cos φ = |v̂− · σ̂ | = |v̂+ · σ̂ | (see Fig. 1). Equations (7) and (8), for a given initial
condition [r(t0), v(t0)] and a fixed spatial arrangement of the scatterers, can be
solved together to obtain ρ(t) as a function of r(t0) and v(t0). Consider a set of
trajectory pairs generated from the same reference trajectory by starting tangent
trajectories with δr(t0) = 0 and δv(t0) = δv0 at a range of initial times t0. One
easily convinces oneself that the radius of curvature along the trajectory rapidly
approaches a limiting value, ρ(r, v) = limt0→−∞ ρ(r, v, t0), with ρ(r, v, t0) the
radius of curvature at the phase point (r, v) for a trajectory bundle starting out
from [r(t0), v(t0)]. Combining Eqs. (7) and (8) one finds that as a function of
decreasing t0, ρ(r, v, t0) can be expressed as a rapidly converging continued
fraction. In Eq. (6) ρ(t) therefore can be replaced by ρ(r(t), v(t)), independent
of initial conditions, and, assuming ergodicity, one may replace the long time
average in Eq. (6) by an equilibrium average.(3,7,9) Besides an average over initial
position and velocity of the point particle this involves an average over all allowed
configurations of the scatterers. In the sequel we will denote it as(3,7,9)

λ+ =
〈
v

ρ

〉
. (9)

A very useful way of rewriting the positive Lyapunov exponent uses the
relationship

|δv+|
|δv−| = ρ−

ρ+
, (10)

with the ρ’s defined again as the values on a trajectory starting in the infinite
past. Combining this with Eq. (6) one finds that for an ergodic system the positive
Lyapunov exponent may be expressed as

λ+ = νc

〈
ln

ρ−
ρ+

〉
coll

, (11)

where νc is the average collision frequency, which is the inverse of the mean
free time between collisions τc, and the average now runs over the equilibrium
distribution of collision configurations. Using Eq. (8) one may rewrite this further
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as

λ+ = νc

〈
ln

a cos φ + 2ρ−
a cos φ

〉
coll

. (12)

3. THE DENSITY EXPANSION OF THE POSITIVE

LYAPUNOV EXPONENT

We now present an analysis for calculating the positive Lyapunov exponent,
λ+, up to O(ñ2), inclusive. As mentioned before, this is done in two steps. In the
first step, we assume that the collisions of the point particle with the scatterers are
uncorrelated, implying that the probability density for a collision with collision
angle φ (see Fig. 1) at all times is given as

pcoll(φ) = νc cos φ. (13)

We calculate the resulting contribution to the positive Lyapunov exponent up to
O(ñ2), by means of both the velocity deviation method and the radius of curvature
method and show that the two agree.

In the second step, we calculate the corrections δλ+ resulting from the non-
overlap condition (in the overlapping scatterer model) and from correlated col-
lisions, i.e. either collisions of the point particle with a scatterer it has collided
with before, since the initial time t = t0, or collisions with a collision rate that is
slightly enhanced by the available information on the absence of other scatterers
on the preceding free path.

3.1. Uncorrelated Collision Approximation

In the velocity deviation method our starting point is Eq. (12). First of all we
note that the contribution νc〈ln(1/cosφ)〉coll is given exactly for all densities by

νc〈ln(1/cos φ)〉coll = −νc

∫ π/2

−π/2
d φ

cos φ

2
ln cos φ

= νc(ln 2 − 1). (14)

So, it remains to calculate the contribution νc〈ln a cos φ+2ρ−
a 〉coll. To investigate

this, consider Fig. 3. The collision angles with the scatterers 1 and 2 are denoted
as φ and ψ respectively. From Eq. (7) it follows that the radii of curvature of 2 and
1 just before respectively just after the collision of the light particle are related
as

ρ
(2)
− = ρ

(1)
+ + vτ, (15)
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Fig. 3. A picture of a collision sequence. The solid and the dashed lines are two trajectories of the
point particle, infinitesimally displaced from each other. Scatterer 1 and scatterer 2 are denoted by 1
and 2 respectively.

and from Eq. (8) we find that

ρ
(1)
+ = a cos φ

2
−

(
a cos φ

2

)2

ρ
(1)
− + a cos φ

2

. (16)

From the last equation we see that at low density of the scatterers ρ
(1)
+ is of

order a and typically by an order of ñ smaller than the free path vτ . Therefore,
in our calculations of Lyapunov exponents the contributions from ρ

(1)
+ in Eq. (15)

only will contribute to higher density corrections and not to the leading terms.
For similar reasons the last term in Eq. (16) may be ignored completely in our
calculations, as it will not contribute to corrections of order smaller than ñ2. The

term still to be calculated may then be written as νc〈ln 2vτ+a(cos φ+cos ψ)
a 〉coll. This

has to be averaged over the distribution of φ, ψ and τ , which are all three assumed
to be independent. The distribution of τ , under the assumption of constant collision
frequency, becomes a simple exponential. Therefore the resulting expression for
the Lyapunov exponent becomes.

λ
(U)
+ = νc

∫ π/2

−π/2
d φ

cos φ

2

∫ π/2

−π/2
d ψ

cos ψ

2

∫ ∞

0
d τ νce−νcτ

× ln
2vτ + a(cos φ + cos ψ)

a

= νc

[
ln

v

aνc
+ 1 − C

]
− πνc

2
ñ

[
ln

aνc

4v
+ 1

6
+ C

]
(17)

where C = 0.5772 · · · equals Euler’s constant. To rewrite this in terms of the
scatterer density, one has to express the collision frequency in terms of the latter. For
overlapping scatterers the overall collision frequency depends on the configuration
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of scatterers, but on average it equals

ν(ov)
c = 2nav. (18)

for all densities. However, this is only true if one averages over all initial points for
the point particle, that is, points inside the enclosures as well as on the percolating
region. At low densities the collision frequency of a particle inside an enclosure
will be much higher than the overall average value, so the collision frequency
of a particle in the percolating area, which we are really interested in, has to be
smaller. Fortunately, these corrections are at most of relative order ñ2 compared to
the leading term (because it takes at least three scatterers to make an enclosure),
so in our present analysis they may be ignored. In the case of non-overlapping
scatterers the collision frequency, for all densities, follows immediately from the
ratio between the sum of the circumferences of all the scatterers to the available
free volume for the point particle, as

ν(nov)
c = 2nav

1 − nπa2
. (19)

Substituting these expressions into Eq. (17), we find that λ
(U)
+ for the respective

cases behaves as

λ
(U)(ov)
+ = 2nav

[
ln

1

2ñ
+ 1 − C + π

2
ñ

(
ln

2

ñ
− 1

6
− C

)]
, (20)

λ
(U)(nov)
+ = 2nav

[
ln

1

2ñ
+ 1 − C + π

2
ñ

(
3 ln

1

ñ
− ln 2 + 11

6
− 3C

)]
. (21)

In the radius of curvature method, λ
(U)
+ is calculated by taking into account

precisely the same dynamical aspects and approximations that have been used in
the velocity deviation method above. The identity of the results may be established
immediately by rewriting the integral in Eq. (6) as a sum of integrals between sub-
sequent collisions of the point particle. By using Eqs. (7) and (15) one immediately
finds that the positive Lyapunov exponent may be expressed as

λ+ = νc

〈
ln

ρ
(i+1)
−
ρ

(i)
+

〉
coll

, (22)

which is obviously equivalent to Eq. (11).
The approximation that the collisions suffered by the point particle are un-

correlated is taken into account by the use of an extended Lorentz-Boltzmann
equation (ELBE) — defined below — for the distribution function f̃ (r, v, ρ, t)
of the moving particle in (r, v, ρ)-space at low density of scatterers. This function
describes the probability density of finding the moving particle at position r with
velocity v and radius of curvature ρ, at time t , averaged over all allowed config-
urations of scatterers (remember that for given configuration of scatterers ρ is a
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uniquely defined function of r and v). Since the speed of the particle is constant
we may replace v by the angular variable θ describing the angle between v and
the x-axis. In equilibrium the distribution function f (r, θ, ρ) is a function of the
radius of curvature only and the extended Lorentz-Boltzmann equation takes the
form Refs. 3,7,9

v
∂ f (ρ)

∂ρ
= νc

∫ π
2

− π
2

dφ
cos φ

2
�

(
a cos φ

2
− ρ

) ∫ ∞

0
dρ ′

× δ

(
ρ − ρ ′a cos φ

a cos φ + 2ρ ′

)
f (ρ ′) − νc f (ρ), (23)

with �(x) the unit step function. In this case, the distribution function f (r, θ, ρ, t)
satisfies the normalization condition∫ ∞

0
dρ f (r, θ, ρ, t) ≡ F(r, θ, t) = 1

2πV
. (24)

Here F(r, θ, t) is the distribution function of the point particle in (r, θ ) space.
The quantity ρ ′ in the argument of the δ-function in Eq. (23), is the pre-

collisional radius of curvature that produces a post-collisional radius of curvature
ρ. From Eq. (15) and the fact that the free path vτ for most inter-collision paths is
of the order ñ−1, it follows that in most cases ρ ′ 	 a. As a result of this one may
to leading order in the density simplify Eq. (23) by using the approximation(3,7,9)

δ

(
ρ − ρ ′a cos φ

a cos φ + 2ρ ′

)
≈ δ

(
ρ − a cos φ

2

)
. (25)

The solution of Eq. (23) obtained with this simplification, will be denoted as
f (0)(ρ). The positive Lyapunov exponent to lowest order in the density of scatterers,
λ

(0)
+ , is obtained by using the distribution function f (0)(ρ) in Eq. (9) to calculate

the ensemble average. We express the solution of Eq. (23), f (ρ) as a power series
expansion in ñ as

f (ρ) = f (0)(ρ) + δ f (0)(ρ) + . . . (26)

and obtain the expression of λ
(U)
+ as

λ
(U)
+ = 2πV v

∫ ∞

0
dρ

f (0)(ρ) + δ f (0)(ρ)

ρ
. (27)

We specifically point out here that to calculate δ f (0)(ρ), one cannot use the ap-
proximation in Eq. (25) any longer. The function δ f (0)(ρ) may be calculated(14)

by applying a successive approximation scheme to Eq. (23). Density corrections
to λ0, contained in λ

(U)
+ , result from both f (0)(ρ) and δ f (0)(ρ). This procedure for

calculating these corrections is algebraically more cumbersome than the velocity
deviation method. Nevertheless, it equally leads to the results of Eqs. (20) and
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(21). However, for systems that are not, on average, spatially homogeneous (e.g. a
Lorentz gas with open boundaries) the velocity deviation method becomes more
complicated and in fact the ELBE method is to be preferred.(11)

In the second step of our calculations we consider corrections due to correla-
tions between collisions. From Eqs. (12), (15) and (16) it becomes clear that there
are two types of corrections that have to be accounted for:

• The approximation of ρ− by vτ + a cos φ/2.
• Deviations from the exponential νc exp(−νcτ ) of the distribution of the

free flight time τ between collisions.

Through order ñ2 the first type of corrections are only important in case vτ is
comparable to a, that is if two scatterers with which the light particle collides are
close to each other. If this is the case, the light particle may recollide an arbitrary
number of times with either scatterer and at each of the collisions the actual value
of ρ− has to be used instead of the uncorrelated collision approximation. This
will be discussed further in the next subsection. The second type of corrections
to order ñ2 only occur for the case of non-overlapping scatterers. They will be
investigated in the next-to-next subsection.

3.2. Corrections Due to Nearby Scatterers

In case two scatterers have a mutual distance comparable to their radius a, a
first collision of the point particle with either of them with fairly large probability
will lead to recollision sequences such as the one shown in Fig. 4.

For the first two collisions, at P and Q, the approximation of ρ− by vτ +
a cos φ/2, with τ and φ the preceding free time respectively the collision angle at
the previous collision, is still adequate. For all subsequent collisions ρ− has to be

Fig. 4. An example scattering sequence involving multiple collisions with two scatterers.
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calculated from Eqs. (8) and (15). This gives rise to a correction

δλ
(ns)
+ = νc

〈
ln

2ρ− + a cos ψ

2vτ + a(cos ψ + cos φ)

〉
coll

(28)

to the positive Lyapunov exponent. The average has to be taken over all two-
scatterer configurations with nearby scatterers and over all points on the circum-
ference of scatterer 1 where a collision may occur (so in the overlapping case
points covered by 2 are excluded) and over all allowed values of the collison angle
ψ , weighted again by cos ψ/2. In fact only those parameters that correspond to
a recollison with 1 give rise to non-vanishing contributions at the relevant orders
of density. For the overlapping scatterer model the initial configurations of the
scatterers do include overlapping ones; for the non-overlapping model such con-
figurations are excluded. We evaluated the averages numerically, with the results

δλ
(ns)(ov)
+ = −0.38 (2nav)ñ and

δλ
(ns)(nov)
+ = −0.28 (2nav)ñ. (29)

Notice that the probabilities that these collision sequences are interrupted by other
scatterers can clearly be ignored at the orders of the scatterer density we are
considering presently.

3.3. Corrections to the Free-Path Length Distribution

The assumption of a constant collision frequency, independent of the past,
is not entirely correct. For the case of overlapping scatterers this only becomes
manifest when one considers corrections of relative order ñ2. So for our present
purposes we may ignore this. For non-overlapping scatterers corrections already
show up at the order ñ. These appear in two forms: shortly after a collision the
probability for a next collision is reduced by a shadowing effect: many scatterer
locations that would give rise to such a collision are forbidden by the non-overlap
condition. This is compensated by an anti-shadowing effect at long times; the
absence of scatterers in a strip of width 2a around the free path of the point
particle increases the probability of finding a scatterer with which this particle
will collide. Obviously, the combined influence of these two effects on the overall
collision frequency has to vanish, but there is a shift of collision probability towards
longer times, shifting the free-path length distribution equally to somewhat larger
values of the free path.

The shadowing effect is illustrated in Fig. 5. For subsequent scattering angles
φ and ψ the minimal path length between the collisions is given by

b(φ,ψ) = a
[√

4 − (sin φ − sin ψ)2 − cos φ − cos ψ
]
. (30)
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Fig. 5. For given scattering angles φ and ψ the free path length between subsequent collisions has
a minimal value b(φ,ψ). This minimum is determined by the condition that the two scatterers touch
each other.

The contributions from shorter path lengths have been counted erroneously in
λ

(U)(nov)
+ and should be subtracted. This gives rise to a correction of the form

δλ
(shad)(nov)
+ = −(2nav)2

∫ π
2

− π
2

dφ
cos φ

2

∫ π
2

− π
2

dψ
cos ψ

2

×
∫ b(φ,ψ)/v

0
dτ ln

(
2vτ

a
+ cos φ + cos ψ

)
,

= −0.0976 (2nav) ñ. (31)

The anti-shadowing effect occurring for long free times, is illustrated in Fig. 6.
For a collision with collision angle ψ there is with certainty no obstruction from
a scatterer that would have given rise to a previous collision with scattering angle

Fig. 6. After a long free flight the probability that a collision will occur like the one shown with
scatterer 2, is slightly enhanced by the fact that no scatterers like 1 can be in the way. If the collision
angles are ψ and φ respectively, the distance over which the absence of 1 influences the probability of
finding 2 is just b(φ,ψ).
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φ within a preceding distance b(φ,ψ). This enhances the collision frequency by
an amount of

δν(lt)
c = νc

∫ π
2

− π
2

dφ
cos φ

2

∫ π
2

− π
2

dψ
cos ψ

2
na b(φ,ψ) (32)

= π + 18
√

3 − 32

24
νc = 0.0966 · · · νc.

One should also take into account, however, that the probability for a collision
at long times is enhanced somewhat by the initial suppression of the collision
frequency through the shadowing effect. The combined effects lead to a long term
collision probability density of the form

pcoll(t) = (νc + δν(lt)
c )e−(νc+δν

(lt)
c )(t−td ). (33)

Here td is the average delay time due to the shadowing effect. It is given by

td = 1

v

∫ π
2

− π
2

dφ
cos φ

2

∫ π
2

− π
2

dψ
cos ψ

2
b(φ,ψ) (34)

and related to δν
(lt)
c by

δν(lt)
c = ν2

c td . (35)

The ensuing correction to the positive Lyapunov exponent now may be obtained as3

δλ
(as)(nov)
+ = νc

∫ ∞

0
dt

{
(νc + δν(lt)

c )e−(νc+δν
(lt)
c )(t−td ) − νce−νct

}
ln

2vt

a
,

= δν(lt)
c ñ

[
ln

1

2ñ
− C

]
. (36)

Collecting the contributions to δλ+ from Eqs. (20), (21), (29), (31) and (36), we
obtain our final result,

δλ
(ov)
+ = 2nav

[
ln

1

2ñ
+ 1 − C + π

2
ñ

(
ln

2

ñ
− 1

6
− C − 0.242

)]
(37)

3 Since we only look at the effect of the deviation of the collision probability from that obtained
under the assumption of uncorrelated collisions, the precise choice of the lower bound on the time
integration does not influence results through order ñ2. We chose 0 for convenience.



Systematic Density Expansion of the Lyapunov Exponents 837

and

δλ
(nov)
+ = 2nav

[
ln

1

2ñ
+ 1 − C + π

2
ñ

{
3 ln

1

ñ
− ln 2 + 11

6
− 3C − 0.24

+ π + 18
√

3 − 32

12π

(
ln

1

2ñ
− C

)}]
. (38)

4. DISCUSSION

In this paper, we have calculated the Lyapunov exponents of a two-
dimensional, random Lorentz gas at low densities up to O(ñ2) in the density
of scatterers. This calculation was carried out in two parts: in the first part we
assumed that subsequent collisions between the light particle and one of the scat-
terers are uncorrelated. In the second part we calculated the effects of correlations
between collisions and, in the case of non-overlapping scatterers, those resulting
from the non-overlap condition. The effects of repeated recollisions of the light
particle with two scatterers that are close to each other, were calculated numeri-
cally, as well as the contribution from δλ

(shad)(nov)
+ . All other contributions to the

positive Lyapunov exponent were obtained analytically. For the sake of brevity and
understanding, we have presented the method in this paper in fairly intuitive terms,
as opposed to the more formal mathematical structure upon which all calculations
have been based originally.(12) A short summary of this formalism, is included in
the Appendix at the end of this paper.

We argued that our analysis covers all density corrections to the Lyapunov
exponent through order ñ2. We have no rigorous proof of this, but it is easy to
support this claim by simple power counting arguments.

The formalism was developed in the context of calculating the Lyapunov
exponents of a two-dimensional Lorentz gas at low densities up to O(ñ2), but
the method itself is not limited to the calculation of the Lyapunov exponents
alone—it can be used for a density expansion of other dynamical quantities of a
two-dimensional Lorentz gas as well. We note that the formalism as well as the
somewhat intuitive analysis in this paper, in principle can be extended so as to
obtain expressions for the Lyapunov exponents up to higher orders in the density
of scatterers. Though it would be very desirable to have reliable results for all
densities, we expect a systematic extension of the present methods will be very
laborious and complicated. Perhaps it will be possible to find non-systematic,
but still accurate approximations, such as Enskog equations or ring kinetic equa-
tions in the kinetic theory of transport processes. In that case the present theory
may be very valuable in providing guidelines and testing criteria at moderate
densities.

A more modest goal would be an extension of the present analysis to systems
out of equilibrium. Here one may think first of all of systems with escape and
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systems under the action of a driving field combined with a gaussian thermostat.
This should certainly be doable.

APPENDIX

Here we want to illustrate how the results obtained in this paper may be
obtained in a systematic way from a diagrammatic analysis of the dynamics of the
Lorentz gas.

Starting point is the binary collision expansion (BCE), explained for the
Lorentz gas, respectively the hard sphere gas in Refs. 15 and 16. The dynamics
of the point particle is expressed as a series of convolution products involving
sequences of alternating free streaming and binary collision operators. The free
streaming operators describe the ballistic motion of the point particle between two
collisions with a scatterer. The binary collision operators consist of a real and a
virtual part. Both of them check for the conditions of a collision to be satisfied.
The real collision operator implements the velocity change of the point particle,
as given by Eq. (2). The virtual collision operator leaves the velocity unchanged
but multiplies by −1. It always produces corrections to simpler terms in the binary
collision expansion, which ignore the collision and let the point particle move
freely through the scatterer.

The binary collision expansion is built by starting from a free streaming
operator ignoring all collisions occurring in reality. The first corrections consist
of terms containing one collision operator, with the real one generating a path
that contains one collision with a specific scatterer and the virtual one subtracting
the free streaming terms for all initial configurations from which free streaming
indeed gives rise to a collision with that given scatterer. Next, two-collision terms
give rise to paths with two real collisions and correction terms with either one real
and one virtual, or two virtual collision terms, and so on.

The non-overlap condition between point particle and scatterers may be ac-
counted for at the initial time, but, as shown by Van Beijeren and Ernst(17) it has
great advantages to postpone this, as much as possible, until the times of the first
collision of the point particle with any specific scatterer. This may be done effi-
ciently by choosing, in each term of the BCE, the first collision operator with any
given scatterer, unless it is the last collision with this scatterer as well, to be a T
operator, rather than a T operator, used for all remaining collisions. The difference
between these two binary collision operators is that the T operator counts virtual
collisions at the instant that the point particle leaves the scatterer, whereas the T
operator counts them at entrance.

The uncorrelated collision approximation is reproduced by keeping in the
BCE exactly those terms in which each scatterer appears at most once. A good
way of rearranging these terms is separating each of the binary collision oper-
ators into its real and virtual part, and taking together all events that have the
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same sequence of real collision operators. Terms with arbitrary number of virtual
collisions between two subsequent given real collisions occurring at times t j and
t j+1, sum to yield the damping term exp[−νB(t j+1 − t j )], with νB = 2nav the low
density limit of the collision frequency. For the case of non-overlapping scatterers
one may extend the analysis so as to replace the low density collision frequency
νB by the full collision frequency νc. To this end one has to replace the collision
operators in the BCE by sums of operators representing the product of the collision
operator with the pair correlation function of the point particle and a scatterer, at
contact. The value of the latter just equals (1 − π ñ)−1, thus reproducing Eq. (19).
Notice that also the particles responsible for the static correlations at collisions
occur in these BCE terms at just one single point in time.

Next, consider correlations due to the same scatterer being present at more
than one collision. As in the main text, we distinguish between nearby cases,
where all scatterers involved are within mutual distances of the order a, and events
in which at least one of these distances is of the order of the mean free path,
� = a/(2ñ). In the nearby case each additional scatterer reduces the weight by an
additional factor proportional to ñ, so in the approximation considered here, we
may restrict ourselves indeed to events involving just two scatterers. As stated in
the main text, both for the overlapping and for the non-overlapping case we obtain
contributions from events in which there is at least one recollision with either of
the two scatterers. As an example, consider an event of the same type as exposed
in Fig. 4, but now with the collisions preceding virtual collisions at P or Q added
(see Fig. 7). Consider first the contributions to Eq. (10) from collisions at R. For
all BCE-events containing a collision at S one has exact cancellation from the
contribution with a real and that with a virtual collision at S. So we only need to
consider events for which the collision at R is the last one. The event with just
one preceding collision, at Q, was included already at the uncorrelated collision
approximation. The event where a virtual collision at P is followed by real ones at
Q and R subtracts the contribution from the event with subsequent real collisions

Fig. 7. Cancellations between real and virtual collision diagrams in binary collision expansion for
repeated collisions between the point particle and two scatterers separated by distances of O(a).
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at T, Q and R in the uncorrelated collision approximation. The contribution with
subsequent real collisions at P, Q and R finally, adds the actual contribution from
the collision at R. Next, consider the contributions from the collision at S. The
event with a virtual collision at Q subtracts the uncorrelated event with collisions
at U, R and S. The events with a virtual collision, respectively no collision at P,
followed by real collisions at Q, R and S, cancel each other and finally again, the
event with all collisions real gives the actual contribution. These reasonings are
easily generalized to collision sequences of arbitrary length. They immediately
lead to the result of Eq. (28).

In the non-overlapping case the contributions from consecutive collisions
with mutually overlapping scatterers need special consideration (in the overlap-
ping case such configurations play no special role). In the diagrammatic represen-
tation of the BCE the overlap gives rise to a non-vanishing Mayer-bond between
the overlapping scatterers and collision events like the one shown in Fig. 5 cor-
respond to sections of diagrams with two different T -operators connected by a
Mayer-bond between the two scatterers involved. Either of the two collisions may
be real or virtual. The case of two real operators leads to the correction δλ

(shad)(nov)
+

of subsection 3.2. The case of a real collision followed by a virtual one is respon-
sible for the delay time td defined in Eq. (34). A virtual collision followed by a
real one is responsible for the enhancement δν

(lt)
c of the collision frequency as

specified in Eq. (33). The diagram segment with two virtual collisions accounts
for the enhancement by δν

(lt)
c of the damping factor in the survival probability

during free flight. Finally, events involving recollisions between overlapping scat-
terers cancel exactly against the same events without the Mayer-bond between
the two scatterers included. In subsection 3.2 this was accounted for by restrict-

Fig. 8. Limitation of the collision angle to O(a/�) for recollision events involving multiple scatterers
that are separated by distances of O(�). Notice that the trajectories between scatterers 1 and 3 are
confined within the shaded grey area, which limits the variation of the collision angle at R within a
range φ ∼ a/�.
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Fig. 9. Cancellations between real and virtual collision diagrams in binary collision expansion for
repeated collisions between the point particle and multiple scatterers separated by distances of O(�).

ing the contributions from recollision events involving two nearby scatterers to
non-overlapping configurations in the non-overlapping model.

Recollisions where the point particle returns to a scatterer from a distance of
the order of the mean free path, restrict the allowed collision angle at the preceding
collision to an angular range of the order a/� ∼ ñ (see Fig. 8). Therefore, at
the level of corrections to λ+ restricted to order ñ2, no further restrictions may
be imposed on the free flight lengths and collision angles of the intermediate
collisions and all of these lengths typically are of order �. Now consider, as
an example, contributions to δλ+ resulting from the recollision at S in Fig. 9.
According to Eq. (11) these come from the averages of ln

ρ−
ρ+

at S, in case the

recollision is real, or at T, in case it is virtual. In either case, the contribution in
which the collision at P is virtual, cancels that where the latter is real, through
the order of ñ considered. The same holds true for the contributions from all later
collisions. Collisions before the recollision of course are not influenced by it at
all. Hence, we conclude that corrections to λ+ from recollision events involving
distances of the order � are absent through order ñ2 and we were justified in
ignoring these in subsection 3.3.
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